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Abstract

In a fluid-saturated porous medium, an electromagnetic (EM) wavefield induces an acoustic wavefield due to the
electrokinetic effect. A potential geophysical application of this effect is electroseismic (ES) logging, in which the converted
acoustic wavefield is received in a fluid-filled borehole to evaluate the parameters of the porous formation around the bore-
hole. In this paper, a finite-difference scheme is proposed to model the ES logging responses to a vertical low frequency
electric dipole along the borehole axis. The EM field excited by the electric dipole is calculated separately by finite-differ-
ence first, and is considered as a distributed exciting source term in a set of extended Biot’s equations for the converted
acoustic wavefield in the formation. This set of equations is solved by a modified finite-difference time-domain (FDTD)
algorithm that allows for the calculation of dynamic permeability so that it is not restricted to low-frequency poroelastic
wave problems. The perfectly matched layer (PML) technique without splitting the fields is applied to truncate the
computational region. The simulated ES logging waveforms approximately agree with those obtained by the analytical
method. The FDTD algorithm applies also to acoustic logging simulation in porous formations.
� 2008 Elsevier Inc. All rights reserved.
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1. Introduction

Electromagnetic (EM) and acoustic wavefields are coupled in a fluid-saturated porous medium due to the
electrokinetic effect, which is related to the electric double layer (EDL) at the solid–fluid interface [1]. An EM
wave in the medium exerts forces on the excess ions in the EDL, which produces a relative flow of the porous
fluid against the solid phase and causes an acoustic wavefield. Conversely, an acoustic wave creates a relative
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fluid flow, which carries the ions in the EDL and induces a convection electric current and an EM wavefield.
The phenomena of an EM field causing an acoustic wavefield and an acoustic wave inducing an EM wavefield
are respectively called electroseismic (ES) conversion and seismoelectric (SE) conversion. Since these electro-
kinetic phenomena are correlated with the properties of the porous media and the porous fluid flow in the
media, potential applications in geophysical exploration and earthquake precursor monitoring were experi-
mentally studied (see e.g. [2–7]).

In the interests of geophysical exploration, SE logging and ES logging methods were put forward and
related experiments were conducted by Zhu et al. [8] and Zhu and Toksöz [9,10]. In order to study the char-
acteristics of the electrokinetic logging responses, Hu and Liu [11] and Hu et al. [12] simulated by the analyt-
ical method the axisymmetric responses of SE logging and ES logging, respectively, in a fluid-filled borehole
within a homogeneous porous formation. If the formation is heterogeneous, numerical techniques, such as
finite-difference methods, finite-element methods, must be adopted. In this paper, we propose a finite-differ-
ence scheme to model the axisymmetric ES logging responses to a vertical low frequency electric dipole along
the borehole axis, which will later be extended to horizontally stratified formations.

The finite-difference time-domain (FDTD) technique first introduced by Yee [13] has been widely used to
model EM waves (see e.g. [14–16]) and acoustic waves (see e.g. [17–19]). Nevertheless, it is difficult to be
applied to model the coupled EM and acoustic wavefields in a porous formation. Due to the large difference
in velocity between EM and acoustic waves, no practical choice of grid size and time step can guarantee both
computational efficiency and robustness in the modeling of the coupled wavefields. Fortunately, the influence
of the converted acoustic wavefield on the EM field is tiny and can be ignored. Thus the EM field can be
decoupled from the converted acoustic field and can be solved separately first. Then taking the known EM
field in the formation as a distributed exciting source of the acoustic field and using Biot’s dynamic theory
of poroelasticity [20,21], the converted acoustic wavefield can be calculated.

The frequency of the electric dipole in the ES logging is several kHz. The wavelength of the EM wave in the
formation in such frequency range is in the order of 104 m for the media of interest. On the one hand, the
region to be discreted for the FDTD method is at least one wavelength multiplied by one wavelength. One
the other hand, in order to simulate the EM field in this logging problem, the sampling interval in space must
be at least shorter than the borehole radius. This means a huge number of steps in space. It is time consuming
and can not be implemented for a single workstation to deal with such a FDTD problem. Fortunately the
region of interest in the logging problem is small, less than 10 m from the electric dipole. The EM field in this
small region belongs to the near-field because the inequality r� k is satisfied, where r is the distance from the
source to the field point and k is the wavelength. In the near-region the field is quasi-stationary, in which the
responses from the source to all field points are approximately simultaneous, and at any given time it is gov-
erned by Poisson’s or Laplace’s equations with respect to the electric potential. We first solve for the distri-
bution of the quasi-static EM field in the formation by a finite-difference method. Then calculate the
converted acoustic field by modifying the FDTD algorithm of acoustic logging simulation, that is, letting
the acoustic source in the borehole in conventional acoustic logging be replaced in ES logging by the distrib-
uted EM field-driven source in the formation.

In this paper, we propose an improved FDTD modeling algorithm for acoustic waves in porous media.
While previous algorithms (see e.g. [18]) are valid only at low frequencies at which fluid flow in pore space
is practically a Poiseuille flow [20], our algorithm is not restricted in frequency by the use in the FDTD imple-
mentation of the dynamic permeability defined by Johnson et al. [22].

When applying the FDTD technique to the problem of wave propagation in an infinite medium, absorbing
boundary conditions (ABCs) must be employed to eliminate artificial reflections from the boundaries of
restricted computation region. Bérenger [23,24] proposed a highly effective perfectly matched layer (PML)
as an ABC for EM waves. Then Chew and Liu [25] proved that it can also be applied to acoustic waves. These
early schemes require field-splitting in the PML, so that the equations in the PML are different from those in
the computational region, which increases the complexity of computation. Roden and Gedney [26] introduced
a nonsplitting PML technique for EM waves, in which the equations have the same form in the PML as those
in the computational region. Wang and Tang [19] then proposed the nonsplitting PML version for acoustic
waves in elastic media. In this paper, we extend their schemes to acoustic and electroseismic wave problems
in poroelastic media.
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The paper is organized as follows. In Section 2, we interpret Pride’s equations that describe the coupling
between the EM and acoustic fields. In Section 3, we propose a FDTD algorithm of modeling the acoustic
logging responses excited by an acoustic point source on the borehole axis. And we compare the FDTD mod-
eled waveforms with those obtained by an analytical approach called the real-axis integration method [27]. In
Section 4, we modify the FDTD algorithm by introducing the electric field into the FDTD formulations of the
acoustic field in the formation so that the converted acoustic responses in the ES logging can be calculated out
if the electric field is known. To get the distribution of the electric field at any given time in the computational
region we formulate in Section 5 a finite-difference method for the static electric equations with respect to the
electric potential. The conjugate-gradient iterative technique is employed to solve the equations. In Section 6,
we simulate the waveforms of the converted acoustic field in the ES logging and compare the waveforms with
those obtained by the analytical method [12].

2. Pride’s equations

The governing equations that describe the coupling between the EM and acoustic wavefields in a homoge-
neous fluid-saturated porous medium were derived by Pride [1], and can be expressed as follows, assuming an
e�ixt time dependence of all fields.
r� E ¼ ixB; ð1Þ
r �H ¼ �ixDþ J; ð2Þ
B ¼ lH; ð3Þ
D ¼ eE; ð4Þ
J ¼ rEþ Lð�rp þ x2qfuÞ; ð5Þ
� ixw ¼ LEþ ð�rp þ x2qfuÞj=g; ð6Þ
r � s ¼ �x2ðquþ qf wÞ; ð7Þ
s ¼ ðH � 2GÞðr � uÞIþ Cðr � wÞIþ GðruþruTÞ; ð8Þ
� p ¼ Cr � uþMr � w; ð9Þ
where E, D, J, B and H are the electric field, electric flux density, electric current density, magnetic flux density
and magnetic field, respectively, u is the displacement of the solid phase, w is the relative flow between the fluid
and the solid phase, s is the bulk stress tensor, I is the identity tensor, p is the pore fluid pressure, e is the per-
mittivity of the formation, l is the magnetic permeability of the formation and is assumed to equal to the mag-
netic permeability of vacuum in this paper, qf and g are the density and viscosity of the pore fluid, respectively,
q is the density of the formation, G is the shear modulus of the formation, H, C and M are porous medium
moduli as defined by Biot [21], j is the dynamic permeability defined by Johnson et al. [22], r and L are the
conductivity and electrokinetic coupling coefficient of the formation, respectively. Electrokinetic coupling be-
tween the EM and acoustic wavefields is reflected in (5) and (6) through the terms with the coefficient L.

For the ES conversion of an EM field inducing an acoustic wavefield, the influence of the converted acous-
tic field on the EM field is weak enough and can be ignored [12,28]. In ES logging, the electric source (such as
an electric dipole) which is located in the borehole excites an EM field. The EM field exerts forces on the net
ions in the EDL of the formation pore fluid. With the motion of these ions, a fluid flow relative to the pore
wall occurs, and a mass transfers through the EDL, resulting in a pressure increase in the region of mass accu-
mulation and a pressure decrease in the region of mass reduction. As a result of this pressure gradient, fluid
flows through the central region of the pores where there are no net ions, but in the direction counter to the
flow in the EDL. The pressure gradient is maximal when macroscopic Darcy flow through the pores is pro-
hibited. That means the second term on the right hand of (6) reaches its maximum value when �ixw is zero,
i.e., (�$p+x2qf u)j/g = �LE. The inertial force x2qfu acting on the fluid is added to the pressure gradient
term because the fluid motion is measured relative to the solid phase which is a non-inertial reference frame
when the electric field is time varying. As such, (5) can be written as
J ¼ rð1� gL2=jrÞE; ð10Þ
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where the dimensionless correction term �gL2/jr represents the maximal influence of the acoustic field on the
EM field. This term is the same as that in (13) of Haines and Pride [29]. As states by Haines and Pride [29], it
typically will satisfy gL2/j0 r<10�5 (j0 is the static Darcy permeability) for the media of interest, which can be
safely neglected relative to one. As such, the term L(�$p + x2qf u) in (5) can be neglected. This fact allows the
EM field to be completely decoupled from the induced acoustic wavefield so that the EM field is determined by
Maxwell’s equations. In addition, Hu et al. [12] have simulated the ES logging waveforms by the coupled
method (taking into account the influence of the converted acoustic wave on the EM field) as well as the
uncoupled method (ignoring this influence). There is no recognizable difference in the waveforms by the
two methods.

As can be seen from (6), in ES conversion, the electric field acts as the source of the acoustic field. When the
source is absent, (6) becomes
Fig. 1
format
�ixw ¼ ð�rp þ x2qfuÞj=g: ð11Þ

The combination of (11) and (7)–(9) is Biot’s equations [21] for acoustic fields in poroelastic media.

3. FDTD modeling of the acoustic logging

3.1. Discretization of Biot’s equations

We adopt the cylindrical coordinates (r,z,h), with the z-axis being the borehole axis (Fig. 1 shows a sche-
matic diagram of the model). As the fields are symmetric with respect to the z-axis, all the quantities are inde-
pendent of the h-coordinate.

First, we rewrite (11) and (7)–(9) in the cylindrical coordinates. In the previous papers on FDTD modeling
of acoustic wave propagation in poroelastic media (see e.g. [18]), the viscous force term in Biot’s equations was
treated as independent of frequency. Such an approximation is valid only when the frequency is so low that the
flow in the pore space is a low-frequency viscous flow, i.e., a Poiseuille flow. In this paper, however, the
dynamic permeability j which includes the frequency correction function for the viscous force is directly
applied to the FDTD implementation, so that our algorithm is not restricted in frequency. The expression
for dynamic permeability j is given by [1]
jðxÞ ¼ j0 1� 4ia2
1j2

0qfx

K2/2g

� �1
2

� i
xa1qfj0

/g

" #�1

; ð12Þ
a2

z

r

Fluid-filled 

borehole  Fluid-saturated 

porous formation 

around the borehole 

. Schematic diagram of the logging model. The fluid-filled borehole of radius a is surrounded by the fluid-saturated porous
ion of infinite extent. The source is located at the origin.
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where the term ð1� 4ia2
1j2

0qfx=K
2/2gÞ

1
2 dependent on frequency is the frequency correction function for the

viscous force term in Biot’s equations, a1 is the tortuosity, and K ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ma1j0=/

p
is the weighted volume-to-

surface radio defined by Pride [1], where m is a dimensionless number.
Substituting (12) into (11), and setting D1 ¼ 4a2

1j2
0qf=K

2/2g and D2 = a1qfj0//g, we get
g
j0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ixD1

p
� ixD2

� � vwr

vwz

� �
¼ �

op
or
op
oz

" #
þ ixqf

vur

vuz

� �
; ð13Þ
where vw = �ixw and vu = �ix u are the velocity vectors of the relative flow and the solid phase motion,
respectively, vwr, vwz, vur and vuz are the velocity components. Eqs. (7)–(9) can be rewritten as, respectively,
� ixq
vur

vuz

� �
� ixqf

vwr

vwz

� �
¼

o
or þ 1

r � 1
r 0 o

oz

0 0 o
oz

o
or þ 1

r

" # srr

shh

szz

srz

2
6664

3
7775; ð14Þ

� ix

srr

shh

szz

srz

2
6664

3
7775 ¼

H�2G
r þ H o

or ðH � 2GÞ o
oz C 1

r þ o
or

	 

C o

oz
H
r þ ðH � 2GÞ o

or ðH � 2GÞ o
oz C 1

r þ o
or

	 

C o

oz

ðH � 2GÞ 1
r þ o

or

	 

H o

oz C 1
r þ o

or

	 

C o

oz

G o
oz G o

or 0 0

2
6664

3
7775

vur

vuz

vwr

vwz

2
6664

3
7775; ð15Þ

ixp ¼ C
vur

r
þ ovur

or
þ ovuz

oz

� �
þM

vwr

r
þ ovwr

or
þ ovwz

oz

� �
; ð16Þ
where srr, shh, szz and srz are the components of the bulk stress tensor s.
Next, in order to formulate the equations in the PML, (13)–(16) are modified by stretching the coordinates

(see, e.g. [19]). The complex coordinate-stretching variable is chosen as sq = 1 + Xq/ix, (q = r, z) in the fre-
quency domain, where Xq is the stretching function with respect to coordinate q. For the PML formulation,
the regular coordinate variable q is replaced by the complex coordinate variable ~q, and the spatial derivative
o=o~q can be expressed in terms of the complex coordinate-stretching variable as o=o~q ¼ ð1=sqÞo=oq. Thus, the
r-components of (13) and (14), the first equation in (15) and Eq. (16), for example, can be respectively modified
as below, in the complex stretched coordinates,
g
j0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ixD1

p
� ixD2

� �
vwr � ixqfvur ¼ �

1

sr

op
or
; ð17Þ

� ixðqvur þ qf vwrÞ ¼
1

sr

o

or
þ 1

~r

� �
srr �

shh

~r
þ 1

sz

osrz

oz
; ð18Þ

� ixsrr ¼
H � 2G

~r
þ H

1

sr

o

or

� �
vur þ ðH � 2GÞ 1

sz

ovuz

oz
þ C

1

~r
þ 1

sr

o

or

� �
vwr þ C

1

sz

ovwz

oz
; ð19Þ

ixp ¼ C
vur

~r
þ 1

sr

ovur

or
þ 1

sz

ovuz

oz

� �
þM

vwr

~r
þ 1

sr

ovwr

or
þ 1

sz

ovwz

oz

� �
; ð20Þ
where ~r ¼
R r

0
srðr0Þdr0 ¼ rð1þ �Xr=ixÞ, and �Xr ¼ 1

r

R r
0
Xrðr0Þdr0.

And then, we transform the equations from the frequency domain to the time domain. Note that the inverse
Fourier transform of s�1

q ðq ¼ r; zÞ is
F �1 1

sq

� �
¼ F �1 1� Xq

Xq þ ix

� �
¼ dðtÞ � Xqe�Xqt; ð21Þ
where Xq P 0, and d(t) is the Dirac delta function. It follows that
F �1 o

o~q

� �
¼ ½1þ /qðtÞ�

o

oq
; ð22Þ
where /q ¼ �Xqe�Xqt� is a convolutional operator. Note also that
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F �1 1

~r

� �
¼ 1

r
F �1 1�

�Xr

�Xr þ ix

� �
¼ 1

r
½dðtÞ � �Xre

��Xr t�: ð23Þ
Using (22) and (23), Eqs. (17)–(20) can be inverse Fourier transformed to the time domain, respectively,
g
j0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ D1

o

ot

r
þ D2

o

ot

 !
vwr þ qf

ovur

ot
¼ � 1þ /rð Þ op

or
; ð24Þ

q
ovur

ot
þ qf

ovwr

ot
¼ ð1þ /rÞ

o

or
þ 1þ �/r

r

� �� �
srr �

1þ �/r

r

� �
shh þ 1þ /zð Þ osrz

oz
; ð25Þ

osrr

ot
¼ ðH � 2GÞ 1þ �/r

r

� �
þ H 1þ /rð Þ o

or

� �
vur þ H � 2Gð Þð1þ /zÞ

ovuz

oz

þ C
1þ �/r

r
þ ð1þ /rÞ

o

or

� �
vwr þ Cð1þ /zÞ

ovwz

oz
; ð26Þ

� op
ot
¼ C

1þ �/r

r

� �
vur þ ð1þ /rÞ

ovur

or
þ ð1þ /zÞ

ovuz

oz

� �

þM
1þ �/r

r

� �
vwr þ ð1þ /rÞ

ovwr

or
þ ð1þ /zÞ

ovwz

oz

� �
; ð27Þ
where �/r ¼ ��Xre
��Xr t�. Eqs. (24)–(27) are the modified Biot’s equations in the PML. When Xq(q = r, z) and �Xr

become zero, these equations automatically reduce to Biot’s equations in the computational region.
Now we discrete the velocity and stress fields in Biot’s equations by using a staggered finite-difference grid

(see e.g. [30]), as shown in Fig. 2. The grid sizes Dr and Dz in the r- and z-directions, respectively, are constant.
Because

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ D1o=ot

p
in the first term on the left hand of (24) can not be discretized, it is approximated by

Taylor series expansion as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ D1o=ot

p
� 1þ ðD1=2Þo=ot. Then, applying the second-order central difference

approximations to (24), we get
g
j0

1

2
þ D1

2
þ D2

� �
1

Dt

� �
vnþ1=2

wrðj;kþ1=2Þ þ
qf

Dt
vnþ1=2

urðj;kþ1=2Þ

¼ g
j0

� 1

2
þ D1

2
þ D2

� �
1

Dt

� �
vn�1=2

wrðj;kþ1=2Þ þ
qf

Dt
vn�1=2

urðj;kþ1=2Þ �
opn

or
þ P n

pr

� �
ðj;kþ1=2Þ

; ð28Þ
where n and (j, k + 1/2) are the index of time and space steps, respectively, Dt is the time step, and
P n
pr ¼ �Xr

Z nMt

0

e�XrðnMt�tÞ opðr; tÞ
or

dt: ð29Þ
Using the trapezoidal integration rule, (29) is approximated as
P n
pr ¼ e�XrDtP n�1

pr �
1

2
XrDt e�XrDt opn�1

or
þ opn

or

� �
: ð30Þ
k

1k +
j 1j +

rzτ
, , , , ,rr zz fp pθθτ τ τ ϕ

, , ,ur wr fr rv v v E

, , ,uz wz fz zv v v E

The FDTD grid in cylindrical coordinates. pf, vfr and vfz are the acoustic wave field quantities in the borehole. u, Er and Ez

nt the electric field quantities. The other quantities denote the acoustic wave field in the formation.
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Similar to the processing of (24), Eq. (25) can be discretized as
qvnþ1=2
urðj;kþ1=2Þ þ qf v

nþ1=2
wrðj;kþ1=2Þ ¼ qvn�1=2

urðj;kþ1=2Þ þ qfv
n�1=2
wrðj;kþ1=2Þ

þ Dt
osn

rr

or
þ P n

rrr

� �
þ sn

rr � sn
hh þ Qn

r hr

r

� �
þ osn

rz

oz
þ P n

rzz

� �� �
ðj;kþ1=2Þ

; ð31Þ
where
P n
rrr ¼ e�XrDtP n�1

rrr �
1

2
XrDt e�XrDt osn�1

rr

or
þ osn

rr

or

� �
; ð32Þ

Qn
r hr ¼ e�

�XrDtQn�1
r hr �

1

2
�XrDt e�

�XrDt sn�1
rr � sn�1

hh

	 

þ sn

rr � sn
hh

h i
; ð33Þ

P n
rzz ¼ e�XzDtP n�1

rzz �
1

2
XzDt e�XzDt osn�1

rz

oz
þ osn

rz

oz

� �
: ð34Þ
To solve (28) and (31), we can derive vnþ1=2
urðj;kþ1=2Þ and vnþ1=2

wrðj;kþ1=2Þ. The other field quantities vnþ1=2
uzðjþ1=2;kÞ, vnþ1=2

wzðjþ1=2;kÞ,

snþ1
rrðjþ1=2;kþ1=2Þ, snþ1

hhðjþ1=2;kþ1=2Þ, snþ1
zzðjþ1=2;kþ1=2Þ, snþ1

rzðj;kÞ and pnþ1
ðjþ1=2;kþ1=2Þ can also be derived from the other equations in

(13)–(16) by the similar discretization process mentioned above.
All the space derivatives of the FDTD implementation are approximated by the second-order central dif-

ference. For example, the space derivative in (28) is approximated as opn
ðj;kþ1=2Þ=or ¼ ðpn

ðjþ1=2;kþ1=2Þ�
pn
ðj�1=2;kþ1=2ÞÞ=Dr.

3.2. Discretization of the equations in the borehole

The first-order equations of the acoustic wave in the fluid-filled borehole can be expressed as [17]
qb

ovf

ot
¼ �rpf ; ð35Þ

opf

ot
¼ �qbc2

bmr � vf þ Gðr; z; tÞ; ð36Þ
where pf is the borehole fluid pressure, vf and qb are the velocity vector and the density of the borehole fluid,
respectively, cbm is the sound speed in the borehole fluid, and G(r, z, t) is the function determined by the
source, which becomes zero for source-free grids.

Similar to the processes mentioned in Section 3.1, and noting that Xr and �Xr become zero due to the absence
of the r-direction PML in the borehole, the acoustic wave equations for source-free grids are discretized as
(Fig. 2 shows the grid for the field quantities in the borehole)
vnþ1=2
frðj;kþ1=2Þ ¼ vn�1=2

frðj;kþ1=2Þ �
Dt
qb

opn
fðj;kþ1=2Þ

or
; ð37Þ

vnþ1=2
fzðjþ1=2;kÞ ¼ vn�1=2

fzðjþ1=2;kÞ �
Dt
qb

opn
f

oz
þ P n

pfz

� �
ðjþ1=2;kÞ

; ð38Þ

pnþ1
fðjþ1=2;kþ1=2Þ ¼ pn

fðjþ1=2;kþ1=2Þ

� qbc2
bmDt

ovnþ1=2
fr

or
þ vnþ1=2

fr

r
þ ovnþ1=2

fz

oz
þ P nþ1=2

vfz

 !" #
ðjþ1=2;kþ1=2Þ

; ð39Þ
where vfr and vfz are the components of the velocity vector vf, and
P n
pfz ¼ e�XzDtP n�1

vfz �
1

2
XzDt e�XzDt opn�1

f

oz
þ opn

f

oz

� �
; ð40Þ

P nþ1=2
vfz ¼ e�XzDtP n�1=2

vfz � 1

2
XzDt e�XzDt ovn�1=2

fz

oz
þ ovnþ1=2

fz

oz

 !
: ð41Þ
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The excitation source in the acoustic logging is a point source as described by Tsang and Rader [31], with the
peak pressure being 100 Pa at a location of 0.01 m away from the source. This source is introduced by letting
Gðr; z; tÞ ¼ 4pc2

bmdðr; zÞSðtÞ in (36), where d(r,z) is the delta function, SðtÞ ¼
R t

0
sðt0Þdt0, and the source pulse

function s(t) used in this paper is
sðtÞ ¼
1
2

1þ cos 2p
T c

t � T c
2

	 
h i
cos 2pf0 t � T c

2

	 

; 0 6 t 6 T c

0; t < 0 or t > T c

(
; ð42Þ
where the center frequency f0 = 6 kHz and the pulse width Tc = 0.5 ms. Eq. (36) for the source grid can be
discretized by the volume integral method. Using the generalized Gauss formula, the volume integral of
(36) is expressed as (see Fig. 3)
Z Z Z

X

opf

ot
dV ¼ �qbc2

bm t
R

vf � dsþ 4pc2
bmSðtÞ

Z Z Z
X

dðr; zÞdV ; ð43Þ
where X and R denote the volume and the surface area of the cylindrical body shown in Fig. 3. Applying the
integral mean value theorem to (43), yields
pnþ1
fð1=2;1=2Þ ¼ pn

fð1=2;1=2Þ þ
c2

bmDt
Dz

�qb vnþ1=2
fzð1=2;1Þ � vnþ1=2

fzð1=2;0Þ þ 2
Dz
Dr

vnþ1=2
frð1;1=2Þ

� �
þ 4

ðDrÞ2
F nþ1=2

" #
: ð44Þ
3.3. The quantities at the borehole wall

For EM wave problems, the method of averaging the adjacent medium parameters can be used to calculate
the field quantities at the boundary (see e.g. [14]). However, it can not be applied to borehole acoustic-field
problems because the governing equations in the formation are different from those in the borehole. Our
method is presented as below.

At the borehole wall (j = ra), the quantity vnþ1=2
frðra;kþ1=2Þ can not be discretized directly according to (37),

because the space derivative o/or in (37) breaks at the medium interface. Using the approximation
opn

fðra;kþ1=2Þ=or � opn
fðra�1=4;kþ1=2Þ=or in (37) yields
vnþ1=2
frðra;kþ1=2Þ ¼ vn�1=2

frðra;kþ1=2Þ �
Dt
qb

opn
fðra�1=4;kþ1=2Þ

or
; ð45Þ
where
opn
fðra�1=4;kþ1=2Þ

or
¼

2ðpn
fðra;kþ1=2Þ � pn

fðra�1=2;kþ1=2ÞÞ
Dr

: ð46Þ
Similarly, the quantities vnþ1=2
urðra;kþ1=2Þ and vnþ1=2

wrðra;kþ1=2Þ at the borehole wall can not be obtained from (28) and (31).
Introducing the approximation opn

ðra;kþ1=2Þ=or � opn
ðraþ1=4;kþ1=2Þ=or to (28) and the approximations
0 0( , ) 1 0( , )

0 1( , ) 1 1( , )

z

r

Fig. 3. Schematic diagram of the volume integral region of the source-grid.



W. Guan, H. Hu / Journal of Computational Physics 227 (2008) 5633–5648 5641
osn
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hhðraþ3=2;kþ1=2ÞÞ=2 to (31), and using the

fact that the variables P n
pr in (28) and P n

rrr and Qn
r hr in (31) are zero at the borehole wall, we have
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where
opn
ðraþ1=4;kþ1=2Þ

or
¼

2 pn
ðraþ1=2;kþ1=2Þ � pn

ðra;kþ1=2Þ

� �
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; ð49Þ

osn
rrðraþ1=4;kþ1=2Þ

or
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rrðraþ1=2;kþ1=2Þ � sn
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� �
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ð50Þ
The acoustic fields in the borehole and formation obey the boundary conditions at the borehole wall:
vnþ1=2
frðra;kþ1=2Þ ¼ vnþ1=2

urðra;kþ1=2Þ þ vnþ1=2
wrðra;kþ1=2Þ; ð51Þ

pn
fðra;kþ1=2Þ ¼ pn

ðra;kþ1=2Þ; ð52Þ
� pn

fðra;kþ1=2Þ ¼ sn
rrðra;kþ1=2Þ; ð53Þ

0 ¼ sn
rzðra;kÞ: ð54Þ
From (54), we derive that the term ðosn
rz=ozþ P n

rzzÞðra;kþ1=2Þ in (48) is zero. When substituting (52) and (53) into
(47) and (48), respectively, there remain four unknown field quantities in Eqs. (45), (47), (48) and (51). By solv-

ing these equations, we derive the field quantities at the borehole wall, i.e., vnþ1=2
frðra;kþ1=2Þ, vnþ1=2

urðra;kþ1=2Þ and vnþ1=2
wrðra;kþ1=2Þ.

3.4. Numerical modeling of acoustic logging

In this section, we check the FDTD implementation for the acoustic logging modeling proposed in Sections
3.1–3.3. We compare the simulated waveforms with those obtained by the real-axis integration method [27]
when the porous formation around the borehole is homogeneous.

Parameters of the borehole and the formation for modeling the acoustic logging and the ES logging later in
this paper are listed in Table 1. The formation has a compressional velocity of 3975 m/s and a shear velocity of
2455 m/s. We set the grid sizes Dr = Dz = 0.0125 m according to the formula Dr = Vmin/10fmax in [32], where
Vmin is the minimum body wave velocity (Vmin = 1500 m/s, i.e., the acoustic wave speed in the borehole fluid
used in this paper), and fmax is the maximum source frequency (we set fmax = 2f0). The time step is chosen as
Dt = 2 � 10�3 ms, in terms of the Courant stability Dt < Dr=

ffiffiffi
2
p

V max, where Vmax is the maximum wave veloc-
ity (Vmax = 3975 m/s, i.e., the compressional wave velocity of the formation used in this paper). There are 200
and 400 cells in the r- and z-directions of the computational region, respectively. The PML contains 60 cells in
all sides outside the computational region. We choose the stretching function Xq(q) = �Vmax(ac + bc2)lna/T,
(q = r,z) as in [19], where c = q/T, T is the width of the PML, a = 10�6 is a predefined level of wave absorp-
tion, and the coefficients a = 0.25 and b = 0.75 are used.

Fig. 4 shows the FDTD modeled pressure responses of the acoustic logging at different locations along the
borehole axis. Note that the results are normalized with respect to the peak value of the response at the



Table 1
Input parameters of the formation and the borehole. The relationships between / and Kb and Gb are assumed to obey the experimental
results of [33]

Parameter Property Value

a Borehole radius (m) 0.1
/ Porosity (%) 20
j0 Static Darcy permeability (Darcy) 1
Kb Frame bulk modulus (GPa) 14.39
Gb Frame shear modulus (GPa) 13.99
Kf Solid bulk modulus (GPa) 35.70
Kf Pore fluid bulk modulus (GPa) 2.25
qs Solid density (kg/m3) 2650
qf, qb Pore fluid density, borehole fluid density (kg/m3) 1000
Cf, Cb Pore fluid salinity, borehole fluid salinity (mol/L) 0.01
rf, rb Pore fluid conductivity, borehole fluid conductivity(S/m) 9.28 � 10�2

g Pore fluid viscosity (Pa s) 10�3

Vbm Acoustic velocity in borehole fluid (m/s) 1500
a1 Tortuosity 3
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Fig. 4. Waveforms of the pressure in acoustic logging received at different locations along the borehole axis.
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location of the receiver-to-source distance z = 1 m. There are three wave groups in the waveforms (shown by
lines A–A, B–B and C–C in Fig. 4): compressional wave group, shear and pseudo-Rayleigh wave group, and
Stoneley wave group. Shown in Fig. 5 are the comparisons between the FDTD and the real-axis integration
methods of pressure responses in the acoustic logging. It is seen that the FDTD modeled waveforms are of the
same amplitudes as those from real-axis integration method, and they are almost in phase apart from the
Stoneley wave group, for which a small deviation in phase occurred between the two methods.

4. Modified FDTD algorithm for ES logging

The acoustic field in acoustic logging is excited by the acoustic source in the borehole; in ES logging, how-
ever, it is induced from the EM field in the porous formation due to the electrokinetic effect. This converted
acoustic field is governed by the set of extended Biot’s equations composed of (6)–(9), which reduces to con-
ventional Biot’s equations when the term LE in (6) becomes zero. Thus in ES logging the excitation source of
the converted acoustic field is the distributed electric field in the formation.

In order to discrete (6), we rewrite it as
vw ¼ vw A þ vw EM; ð55Þ
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Fig. 5. Comparisons between the FDTD and the real-axis integration methods of the waveforms of pressure in acoustic logging. (a)
z = 3.0 m and (b) z = 4.0 m.
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where vw_A = (�$p + x2qf u)j/g and vw_EM = LE represent the relative flow velocities that concern with the
acoustic field and the electric field, respectively. The quantity vw_A can be discretized from (11) using the
FDTD implementation of the acoustic logging simulation proposed in this paper. Now, we only need to dis-
crete the quantity vw_EM.

The electrokinetic coupling coefficient L is given by [1]
L ¼ L0 1� ix
qfK

2

4g
1� 2

~d
K

 !2

1� i
3
2

~d
d

 !2
2
4

3
5
�1

2

; ð56Þ
where L0 ¼ �ð/ef1=a1gÞð1� 2a1~d=KÞ is the low-frequency electrokinetic coupling coefficient, and for the for-
mation parameters used in this paper L can be approximated to L0 when the frequency is less than 1 kHz, ef is
the permittivity of the fluid in the porous formation, B is called the zeta potential which is the electric potential
at the shear plane, which separates the two layers, i.e., the adsorbed layer and the diffuse layer in the EDL, d is
the viscous skin depth, ~d is the length defined by Pride [1] that is equal to or less than the Debye length.
According to [1], the assumption ~d=d� 1 can always be satisfied in common rocks, if the frequency is less
than 103 kHz. Thus (56) for the expression of L can be approximated as
L ¼ L0 1� ix
qfK

2

4g
1� 2

~d
K

 !2
2
4

3
5
�1

2

: ð57Þ
By substituting (57) into vw_EM = LE, and setting D3 ¼ qfK
2ð1� 2~d=KÞ2=4g, we have vw EM

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ixD3

p
� L0E.

Then applying the Taylor series expansion to the term
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ixD3

p
, we have vw_EM (1 � ixD3/2) � L0E. Now

the r-component of vw_EM can be discretized as
D3

2Dt
þ 1

2

� �
vnþ1=2

wr EMðj;kþ1=2Þ ¼
D3

2Dt
� 1

2

� �
vn�1=2

wr EMðj;kþ1=2Þ þ L0En
rðj;kþ1=2Þ ð58Þ
The discretization for the z-component can be represented similarly. In view of (58), the grid points of the elec-
tric field E and the relative flow velocity field vw should be at the same locations (see the grid in Fig. 3). It is
clear from (55) and (58) that by introducing the electric field to the FDTD algorithm of the acoustic logging
simulation, the modified algorithm allows for the ES logging modeling. Now the converted acoustic wavefield
in ES logging can be modeled if we know how to obtain the distribution of the electric field in the formation,
which is the aim of the next section.
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5. Finite-difference modeling of the electric field

The EM field in the interested region belongs to the near-field which is considered as a quasi-static field.
This means that $ � E(r,z) = 0 throughout the modeled region, thus E(r,z) = �$u(r,z), where u is the electric
potential. Now we model by finite-difference method the distribution of the electric potential in the borehole
and the formation.

The borehole fluid can be seen as a conductive medium, due to rb/xeb	 1 in this study, where rb and eb are
the conductivity and the permittivity of the borehole fluid, respectively. Thus the electric potential satisfies the
Poisson equation rb$

2u = $ � J0 for the source region in the borehole, where J0 is the electric current density
of the source. The vertical dipole point source along the borehole axis employed in this study is introduced by
letting J0 = Ped(R)ez, where Pe is the electric dipole moment, d(R) is the Dirac delta function, R is the distance
from the field point to the source, and ez is the unit vector in the z-direction. We approximate the Dirac delta
function by a distribution over a 5 � 5 grids area, so that d(R) = 1/25DrDz.

For the grid points out of the source region, the electric potential obeys the Laplace equation $2u = 0. The
discretization of the Poisson’s equation and the Laplace’s equation with respect to the electric potential in the
cylindrical coordinates is formulated in Appendix A.

As the problem under consideration is unbounded in both the radial and axial directions, we put a bound-
ary layer of an additional 50 grid points to all sides of the computational region to push the influence of the
boundary far away from the computational region. Following Haines and Pride [29], we increase the step
lengths of the grid points in the boundary layer by a factor of 1.3 from one grid point to the next, up to a
maximum of 20 times the original step length. Outside the boundary layers, we employ Neumann condition
ou/om = 0, where m is the direction normal to the boundary.

By the discretization of the electric potential at all the grid points, the equations AU = d are estab-
lished,where A is a sparse matrix that contains the coefficients of the electric potential in the discretized equa-
tions, and there are no more than five non-zero elements in each row of the matrix; U is an array that includes
the unknown electric potential at all the grid points; d reflects the effects of the dipole source. These equations
are solved by the conjugate-gradient iterative method. Thus we get the distribution of the electric potential in
the borehole and formation at a given time and are able to model the converted acoustic wavefield by the pro-
cesses described in Section 4.

6. Numerical modeling examples of the ES logging

In this section, we simulate the ES logging responses in a homogeneous fluid-saturated porous medium, and
compare with those obtained from the analytical method [12]. The electric source pulse function is given by
(42), which is identical with that for the acoustic logging simulation in this paper.

The electric field derived from the modeled electric potential according to E(r,z) = �$u(r,z), is compared
with that obtained by the analytical method [12]. Comparisons of the electric field at different locations along
the borehole wall are shown in Fig. 6. These results from the finite-difference method are modeled with the unit
moment, i.e., Pe = 1, which corresponds to the peak value in the source pulse function given by (42) at the time
of 0.250 ms. And those by the analytical method are the maximum values of the waveforms which arrive at
0.253 ms. The agreement shows the correctness of the finite-difference modeling of the electric field.

Fig. 7 shows the simulated waveforms of the converted pressure at different locations along the borehole
axis in the ES logging. The waveforms are normalized with respect to the peak value at z = 1 m. It can be seen
from Fig. 7 that there are four wave groups in the waveforms (shown by lines A–A, B–B, C–C and D–D,
respectively) which are identical to those in [12], i.e., EM-accompanying wave group, compressional wave
group, shear and pseudo-Rayleigh wave group, and Stoneley wave group. Fig. 8 shows the comparisons
between the FDTD and the analytical methods of the waveforms in the ES logging. The EM-accompanying
group is identical between the two methods, but the later three groups have small deviations both in amplitude
and phase. The deviations are possibly resulted from the numerical approximations of the conjugate-gradient
iterative method for solving the electric field in an unbounded region and caused by the approximate quan-
tities introduced in the FDTD modeling of the acoustic logging. Despite of these deviations, the proposed
numerical solution gives a very good approximation of the ES logging response.
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Fig. 7. Waveforms of the converted pressure in ES logging received at different locations along the borehole axis.
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7. Conclusions

We have proposed a FDTD scheme with nonsplitting PML for modeling the electroseismic as well as
acoustic logging in a fluid-saturated porous formation. For the acoustic logging simulation, we introduced
the dynamic permeability into the FDTD implementation to allow for both the inertial force dominated
high-frequency domain and the low-frequency viscous flow domain of acoustic waves in porous media. This
is advantageous over previous studies. Waveforms of the acoustic logging simulated by the FDTD algorithm
agree with those obtained from the real-axis integration method.

By the finite-difference method we have simulated the quasi-static electric field excited by a vertical electric
dipole along the borehole axis, and then compared the results with the analytical solutions. Agreement is
observed between the finite-difference and the analytical results. The distributed electric field in the formation
acts as the source of the converted acoustic wavefield in ES logging due to the electrokinetic effect. To simulate
the ES logging, we modified the FDTD algorithm by replacing the acoustic monopole source of the acoustic
logging with the distributed electric-field-driven source in the formation. We have compared the modeled
waveforms with those obtained by the analytical method. The waveforms from the two different methods
approximately agree.

The advantage of the finite-difference scheme over the analytical method is that it makes it possible mod-
eling the ES logging responses in a horizontally stratified formation, which is more common in reality. We do
not discuss this extension in this paper, but point out that it can be implemented by using the method of aver-
aging the adjacent medium parameters to deal with the field quantities at the boundary between two layers.
Moreover, the idea of finite-difference modeling of the ES logging in this paper can be applied for other ES
conversion problems, such as vertical electroseismic profiling.
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Appendix A. Discretization of the equations with respect to the electric potential

By using the second-order central difference approximations, Poisson’s equation rb$
2u = $ � J0 for the grid

points in the source region is discretized as (see Fig. A.1),
A0u0 ¼ A1u1 þ A2u2 þ A3u3 þ A4u4 � f0; ðA:1Þ

where f0 = $ � J0/rb = �Pe/25DrDz2rb, and
A0 ¼
2

h2h4

þ 1

h1h3

2þ h3 � h1

r0

� �
;

A1 ¼
1

h1ðh1 þ h3Þ
2þ h3

r0

� �
;

A2 ¼
2

h2ðh2 þ h4Þ
;

A3 ¼
1

h3ðh1 þ h3Þ
2� h1

r0

� �
;

A4 ¼
2

h4ðh2 þ h4Þ
;

ðA:2Þ
where r0 is the distance from u0 to the z-axis, and hn (n = 1, 2, 3, 4) are the step lengths, we set h1 = h3 = Dr

and h2 = h4 = Dz for the grid points in the computational region. For the grid points out of the source region,
f0 becomes zero and (A.1) reduces to the discretized form of Laplace’s equation $2u = 0.

By applying the continuities of the electric potential and the electric current in the r-direction, the equation
for the electric potential points at the borehole wall can be discretized as
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Fig. A.1. The grid for the finite-difference modeling of the electric potential u.
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A0 1þ A1

A3

r0

rb

� �
u0 ¼ A1

r0

rb

1þ A1

A3

� �
u1 þ A2 1þ A1

A3

r0

rb

� �
u2 þ ðA1 þ A3Þu3 þ A4 1þ A1

A3

r0

rb

� �
u4; ðA:3Þ
where r0 = /rf/a1 is the low-frequency conductivity of the formation, and the approximation r � r0 is rea-
sonable for the frequency range in this study, rf is the conductivity of the porous fluid.

References

[1] S.R. Pride, Governing equations for the coupled electromagnetics and acoustics of porous media, Phys. Rev. B 50 (1994) 15678–
15696.

[2] A.H. Thompson, G.A. Gist, Geophysical applications of electrokinetic conversion, Lead. Edge 12 (1993) 1169–1173.
[3] K.E. Butler, R.D. Russel, A.W. Kepic, M. Maxwell, Measurement of the seismoelectric response from a shallow boundary,

Geophysics 61 (1996) 1769–1778.
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